The Impact of Horizontal Resolution on the Tropical Heat Budget in an Atlantic Ocean Model

نویسندگان

  • MARKUS JOCHUM
  • RAGHU MURTUGUDDE
  • RAFFAELE FERRARI
  • PAOLA MALANOTTE-RIZZOLI
چکیده

An ocean general circulation model (OGCM) of the tropical Atlantic is coupled to an advective atmospheric boundary layer model. This configuration is used to investigate the hypothesis that resolving tropical instability waves (TIWs) in OGCMs will remove the equatorial cold bias that is a feature common to coarse-resolution OGCMs. It is shown that current eddy parameterizations cannot capture the TIW heat flux because diffusion in coarse-resolution OGCMs removes heat from the warm pool to heat the equatorial cold tongue, whereas TIWs draw their heat mostly from the atmosphere. Thus, they can bring more heat to the equatorial cold tongue without cooling the warm pool, and the SST in the warm pool is higher and more realistic. Contrary to expectations, the SST in the equatorial cold tongue is not significantly improved. The equatorial warming due to TIWs is slightly greater than the warming due to diffusion, but this increased equatorial heat flux in the high-resolution experiment is compensated by increased equatorial entrainment there. This is attributed to the Equatorial Undercurrent being stronger, thereby increasing the entrainment rate through shear instability. Thus, higher resolution does not significantly increase the total oceanic heat flux convergence in the equatorial mixed layer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D Modeling of Wind-Driven Circulation In The Northern Indian Ocean During Monsoon

Abstract The purpose of this research is to design and identify some of the natures and characteristics of high-resolution surface currents in the Northern Indian Ocean. The pattern of 3D circulation of the Wind-driven surface currents, Sea surface temperature (SST) and Sea Surface Salinity (SSS) distribution in the Northern Indian Ocean using The MIT general circulation model (MITgcm) with ho...

متن کامل

Looking for the Role of the Ocean in Tropical Atlantic Decadal Climate Variability*

Ocean models are used to investigate how variations in surface heat fluxes and ocean heat transports contribute to variations of tropical Atlantic SSTs on decadal timescales. The observed patterns of variability, deduced from reanalyses of the National Centers for Environmental Prediction (NCEP), are found to involve the ocean’s response to variations in the strength of the northeast and southe...

متن کامل

Seasonal mixed layer heat budget of the tropical Atlantic Ocean

[1] This paper addresses the atmospheric and oceanic causes of the seasonal cycle of sea surface temperature (SST) in the tropical Atlantic on the basis of direct observations. Data sets include up to 4 years (September 1997 to February 2002) of measurements from moored buoys of the Pilot Research Array in the Tropical Atlantic (PIRATA), near-surface drifting buoys, and a blended satellite in s...

متن کامل

A Mathematical Model for Indian Ocean Circulation in Spherical Coordinate

In recent years, the Indian Ocean (IO) has been discovered to have a much larger impact on climate variability than previously thought. This paper reviews processes in which the IO is, or appears to be, actively involved. We begin the mathematical model with a pattern for summer monsoon winds. Three dimensional temperature and velocity fields are calculated analytically for the ocean forced by ...

متن کامل

Can global warming affect tropical ocean heat transport?

Tropical meridional ocean heat transport is studied in six coupled ocean-atmosphere models in which atmospheric CO 2 concentration has been increased. In the Indo-Pacific, the strength of Subtropical Cells (STCs) changes in response to changes in the trade winds. However, the change is not consistent among models. In contrast, in all models the tropical Indo-Pacific heat transport remains nearl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005